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ABSTRACT

This paper considers the synthesis of linear reduced order filters
and the synthesis of linear full order filters with minimum complexity.
The objective of a reduced order filter is to estimate a linear trans-
formation of the state vector with a filter of lower dimension. This
type of filter occurs frequently in applications. Several cases arc
studied. In a number of cases it is shown that singular arcs exist.

In instances where certain filter parameters are not subject to optimi-
zation, it is shown that the remaining parameters can be optimized with
a relatively simple procedure. Closed form solutions for a number of

cases have been obtained.

I. INTRODUCTION

The problem of optimal linear filtering has been examined f{rom many
viewpoints, including treatmerit within a control theoretic framework
[1]. In this paper we wish to address the problem of cstimating a
linear transformation of a state vector using a filter which may be of
reduced order relative to the dimension of the state vector. Control
methodologies are used to optimize the parameters of the filter.

The motivation for this paper is based on the fact that often one
is only interested in estimating a portion of a state vector. In a high
accuracy pointing and tracking system for aircraft to satellite tracking
{2}, for example, one might be primarily interested in cstimating certailn
physical variables such as angular rate of the line of sight and the
pointing misalignment errors. The state vector might be very large,
however, containing many states associated with detailed models of the
error producing mechanisms in inertial instruments. I[f onc were to
design a full order filter, the complexity would be intolerable from
the viewpoint of a flight computer implementation. Such difficulties
have long been recognized and, consequently, there has been considerable




research in this area [3-9]. Within a deterministic framework,
Luenberger has shown that one may achieve considerable reduction of 14
complexity in the state reconstruction process when only a linear com- H
bination of the state variables is required [10]. It would seem that
a similar reduction in complexity should occur when the problem is
stochastic. Indeed, it will become clear that this paper has some
relationship to observer theory.

Although the primary thrust of this paper is towards the reduction
of filter complexity through order reduction, it will be shown that it
1s even possible to reduce filter complexity in the full order case.

This happens because for certain classes of problems the Kalman filter
is not the only solution [1]. Other estimators can result in the same
value for the performance measure.

The paper is divided into five sections. Section II casts the esti-
mation process into a deterministic control problem which then can be
solved via use of the matrix minimum principle. Section III contains
the development of the problem solution. The conditions for unbiascdness
are developed and the necessary conditions for optimality are given.
Several cases where exact anzlytical solutions to the two point boundary
value problem may be found are presented.

The first special case is that of terminal time estimation. The
importance of this case may be found in orbit determination and in
geodetic model determination in which one is interested in the optimal

estimate at only one time instant. The solution for this case yields

a singularity which may be taken advantage of by choosing the simplest
filter configuration. By choosing part of the structure a priori, one
needs to solve a simple linear two point boundary value problem which is
casily accomplished. The second and third special cases are that of an
interval estimation problem. The optimal reduced order solution is given
in closed form in these cases for various assumptions on the transf{orna-
tion (whether time invariant or time varying) of the ftull order states

to the reduced state space.
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¥ Section IV considers the solution to the two point boundary value

problem when part of the structure is chosen a priori. A Riccati solu-
tion is given. This solution may be done off line and the gains either
stored or approximated. Section V considers examples of the results.

The ability to obtain simple structures for filtering allows onc
to implement the least complex filter. This will yield a vast savings
in on line computation or hardware implementation.

IT. PROBLEM STATEMENT ]

The system of interest is a Markov process satisfying a linear
stochastic differential equation

x(t) = A(D)x(t) + w(t). (1)
The observation model is also linear
¥it} = Glt)x{t) * v(t). (2)

The state vector x is of dimension n and the observation vector y is of
dimension m. It is assumed that the initial value of the state vector,
x(to), 1s uncorrelated with the plant noise, w(t), and the measurement
noise, v(t). The noise processes are zero mean white processes, uncor-

related with each other, having covariance matrices

Q(t)8(t-1)
E:v(t)vT(T): R(t)6(t-1).
The initial state of the system has mean and variance
l{x(to)} Ly Ho (4)
Var{x(to)} = P,.
The problem is to estimate a linear transformation of the state

E}w(t)wT(T):

vector
z(t) = N (t)x(t) {5

where z is of dimension %<n, and presumably the 2xn matrix, N(t), is

§ selected to indicate the part of the system which is of primary concem.
As an example, if N(t) = C(t), then we are interested in the noise frec
output as indicated by (2). The filter to be optimized is of the form

b 3(t) = F()2(t) * Ky (t) + g(t) (6)




éi-Efu(t)} = F(t)E{e(t)}. (12)
Thus if Be(ty)} = 0, equation (8) is satisfied. This is true if ]
2(te) = N(to)us (13)
S

where z is of dimension 2. The error, e(t), is defined as

e(t) = z(t) - z(t). (7)
The deterministic vector, g(t), and the filter initial condition Z(t,),
are to be determined so that the filter is unbiased, i.e.,

Ble(t}} = 0 Vt>tg. (8)
Note that we do not require conditional unbiasedness which is a much

stronger requirement. ‘The matrices F(t) and K(t) are then to be deter-

mined so that the performance measure

Tt .
s E}f Felmuwemdt + eT(tf)Se(tf)l )
to

|

is a minimun. It is assumed that the weighting matrix S is positive
definite. The weighting matrix U(t) is critical to the problem formula-
tion, as we obtain different results depending upon whether this matrix
is positive definite or zero. Tt can make sense to have U(t) be zero,
when the only time of real importance is the final time such as in

orbit determination. Indeed when U(t) is zero and N is a constant

transformation, it will be seen that performance does not depend on
Ft) <

[TI. PROBLEM SOLUTION

We shall first examine the requirements for unbiasedness. By direct
substitution from (1), (2), (5), and (6), the error equation is obtained
¢ = [N+NA-FN-KC]x + Fe + Nw - Kv - g. (10)
If g(t) 1s selected as

g = [N+NA-FN-KC]u (11)
where u(t) is the mean value of the system state,
H(t) = A(Du(t) 5 u(te) = uo
then it is clear that taking expectation of (10) gives a homogencous

result
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since then

E{e(to)} = E{N(to)x(ty) - N(to)ue} = 0 (14)
and the desired result follows. Hence (11) is the expression needed for
g(t) and (13) specifies the filter initial condition. Equation (10) can
be rewritten as

¢ = [N#NA-FN-KC]x + Fe + Nw - Kv (15)
where x = x-p satisfies the linear equation
X = X % Wi (16)

Certainly X is a zero mean process having initial variance Py. It 1s
convenient to work with the second moment matrix associated with (15)
and (16) in formulating the optimal control problem which will give the
requirements for F and K.

The performance measure (9) can be written as

s : "
J = trf Uit)P. . (t)dt + SP._(t.) (17)
I ee et
Co '
where
P (t) = Elee ! (18)
ce | J .
From (15), PC0 satisfies
C R o T
= N ~ BN ¥ et % b) R
e [N+#NA-FN-KC]P— + FP,_ + P I -
N Pei{ﬁ+NA-FN-KC]T + NONT + KK
where
MR I s T BN
pex(t) = L’e(t) x(t) | Pxo(t, ’ (20
Using (15) and (16), it is easy to show that
p— = AP~ + P—[N+NA-EN-KC]T + P= F! + on' (21
Xe XC XX Xe
where
P—(t) = EX®X ()] (22
XX | f
satisfies the equation
(e T %
b Betise T %

The temm ch satisfies the transpose of (21). Initial conditions f{or
(19), (21), and (23) are

e
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P}}{to) =Ry

T | , ~
Pxé(to) = peffto) = N(to)P, (24)
1
Pee(tD) R N(tQ)PQN (to).

The matrix pii(t) may be regarded as a known quantity since it is the
solution to (23), i.e.,

Pi;(t) = ¢(t,to)po¢1(t,fo) +{J(. ¢(t,T)Q(T)¢I(t,T)dt (25)
ty
where

]

b(t,t) I

b(t,r) A(L)o(t,T). (26)
The optimization problem may then be stated in a deterministic way, so
that the matrix minimum principle is applicable. The problem is
to minimize (17) by properly selecting F and K, subject to the con-
straints imposed by (19) and (21). To preserve symmetry we include the
transpose of (21) in the Hamiltonian also.

The Hamiltonian for this problem is

Bl SR VI SRl
El= tT(UPeC & PocAee i pxe"\xc i Pexﬂex"

and

1

The equations for the Lagrange multiplier matrices are

PR e R ) e
i\ = = = = S {£0)
ee BPCC | ce ae
f sttt e Gl fesa-mv-keyTa ! (29)
Xe 8P§é e xe ce |

with terminal conditions

Aoe(tf)

u
wn
—
(&3]

D

and
s = 511
Axe(tf) 0 (31)
The matrix Ac? is just the transpose of A;b. Setting the gradient of H
with resnect to K equal to zero gives a necessary condition for the
optimum gain

K = [p 2y j'l i P«w]<5rR»] (32)
ex ee  ex Xx




where R and Aee have been assumed to be nonsingular. The matrix F pre-
sents a difficulty since it appears linearly in the Hamiltonian. It is
convenient to proceed as in [14] by examining that part of the Hamil-
tonian which depends explicitly on F, defined as
T

H* = tr:Fe + OlF |

a = b = P —_ = s s r )
0 [Iee NPxe]Aee . [Pex NPXX]Axe. (34)

Clearly what we have called O is just the transpose of the gradient

(33)
where

matrix, oaH/3F. From the initial conditions (24), it may be seen that
O(t,) is zero. It is necessary to examine the time derivatives of 0O
to determine the possible existence of a singular arc. Since different
requirements will be obtained, it is convenient to examine 0O under
different conditions. It is required that O(t) equal zero for all
te[to,tf} if a singular arc is to exist.
3.1 Case 1

In this first case, it is assumed that U(t) is zero. Then it
follows that

£ i, ; | Bl _ T - oy
o FO + OF + k[ék Moo - CPch, cpxeAce]. (35)

The bracketed term in (35) is zero whenever K(t) is selected optimally,
according to (32). Therefore (35) becomes

O = FO + OF (36)
and since 0(t,) is zero, (36) assures us that O(t) remains zero for all
ta[to,tf], regardless of our choice of F. The implications of this
result are significant. In the full order case (N=1), as was pointed
out in [1], the Kalman filter is just one solution, i.e., one of the
optimal linear filters. This means that for final time estimation
problems, one should examine other realizations of the optimum linear
filter. It will be seen that such realizations can be easier to imple-
ment than the Kalman filter. We have demonstrated here that for reduced
order filters also the solution is not unique. One can pick F for some
other reason than minimizing J, such as to reduce sensitivity, to satisfy

a constraint, or to minimize some performance measure involving F.

Consider adding a nonnegative term




te
i f o [E(t) ]dt (37)

to

to the performance measure J given in (17). Since 0=0, it is seen that

a necessary condition for F to be optimal is that

a - 2
Gk 0 Vte[t,,te]. (38)

For example, it may be advantageous to use a measure of F as

J[F()] = triFee) TR(t)} (39)
which weights the magnitude of the elements of F. This particular choice
of p yields an F identically equal to zero. This clearly is the simplest
solution for F.

An alternative method of choosing the gain K may proceed as follows.
This alternative method shows from another approach that, indeed, the
results contained herein are reasonable. Let QKF be the transition
matrix for the optimal Kalman filter. Obviocusly, this is the transition
matrix associated with (A-K,C) where K, is the optimal Kalman gain. If
one considered the solution of the Kalman filter at the final time,
assuming zero initial conditions, i.e.,

fo(tf) = N(Tf)io(tf)

(40)
g : .
= .j[ N(tf)ﬁKF(tf,r)ho(T)y(T)dT,
0
where X, 1is the optimal Kalman estimate, and the solution for the
filter developed herein, i.e.,
te
2t = F o (te, 0K(0)y(1)dt n
fi RS
to
where ¢. is the transition matrix associated with F, then it may be

F
noticed that it is sufficient for optimality that z{t{) to be equal to

io(tf), and this holds if
N(tf)ﬁKF(tf,r)Kg(r) = @F(tf,T)K(T), VTs[to,tf]. (42)

Since F is arbitrary for the singular solution or is zero for the solu-
tion of the problem with (39) in the Hamiltonian, F may be chosen as
cero.  If this is the case then the solution for the reduced order

filter gain is




fm—

K(t) = Ntp)dp(t, 0K, (1) (43)
where the transition matrix @KF(tf,t) may be calculated from
d op(te,t)

dt
which is integrated backwards from ¢KF(tf,tf) = J. The solution for

¥ QKF(tfrt)(A"KOC) (44)

K(t) may be accomplished offline and either stored or approximated.
Probably the most advantageous property of the singularity with
respect to F is computational. If F is picked a priori, then one only
needs to solve a linear two-point boundary-value problem (TPBVP), which
is easy to do using linear systems theory. Alternatively one can use
a procedure which leads to a Riccati equation type of solution. These
methods are examined in a later section.
3.2 Case 2
In this case N is constant but U is assumed to be positive defiunite.
This leads to an additional term in (36), i.e.,

A= B = < A 45
6 = Fo+oF- (P - NP U (45)

Hence it is required that
ealt) = NRC (€] Vte[t,,t,] (46)

since U 15 positive definite. Clearly this cannot be satisfied for
arbitrary F. Thus the existence of the singular arc depends on the
choice of F in this case. Defining (,

g & P - NP (47)
ee Xe

it 1s seen that

S i =k A R Ao 49"
= P+ QF + (P -NP—){NA-FN-KC] - K[RK'-CP_ 1. (48)
It is required that Q(t) equal zero for all t in the interval of interest.

From (24) it is apparent that Q(t,) is zero. In order to develop the

equation
& = Euw R (49)
so that Q(t) i1s zero, it is required that
NA - EN - K& = 0, (50)
This leads to the result from (29) that
laci[t) = 0 (51)

10
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so that the gain is evaluated as

e BEHE-F, PACe s T
() I l’ex(tJL (t)R “(v). (52)

Clearly (52) implies that the last temm in (48) is zero, and we have the
desired result. Thus if F can be chosen so that (50) is satisfied, a
singular arc exists, provided K is selected according to (52). In the
full order case, when N=1, the proper choice of F is

F = A - KC. (53)
The TPBVP is then solved by the Kalman filter, a result which is easily
verified. In the reduced order case, (50) is simply the observer con-
straint equation, [10]. If the randomness were removed from the problem,
(50) is required so that Z(t) = Nx(t) for t>t, if there is no driving
vector, g. Equation (46) has an interesting interpretation. It is easy

to see that it is just the orthogonality requirement in a reduced space,

Ejzme’ (! = o. (54)
[t must be made clear that it is not always possible to satisfy (50) and
(52) simultaneously, and consequently it is not always possible to have -
a singular arc, In such cases the problem should probably be reformulated
with bounds on F, or a suboptimal solution accepted.
A necessary and sufficient condition that there be a solution I for
(50) is that .
(NA-KON'N = NA - KC  Vte[t,,t.] (55)

where Nf is a pseudo inverse of the matrix N. In this case the solution
for F is .

F = [NA-KCJN + T[I-MN ] (56)
where I' is an arbitrary ¢x¢ matrix [12]. In particular if AT is non-
singular, then

Fo= (NA-KCINTpNTg ! (57)
is a solution., When the F of (57) can be found, the K which is the
solution to (52) can be evaluated by solving the equation

b = PAl + [NA- I’CX(TTR_IC]NT[NNT]'H‘C; + NQ (58)

A from initial condition (24), and substituting the result in (52). Note

7w

that there are only 2:n elements in Pei-which may be far less than if we

T




were to solve the problem by estimating x first, and then use the result,
z = NXx. Doing it that way would require solving a Riccati equation with
n(n+1)/2 distinct elements.
3.3 Case 3

In this case, N is not constant. By some fortunate cancellation,
(45) is still applicable but {48) is not. Equation (48) is replaced by

& = Fo+ QFl + (PeE—NPE)[N+NA~FN-KC] - kIR -cp ). (59)
[t is clear that Q(t) will be zero if
N +NA-FN-KC = 0. (60)
Then (51) and (52) and (54) are still true. To be able to solve (60)
for F, it is necessary and sufficient that

@NA-KON'N = [ReNA-KCTVee [t ) (61)
The solution for F is
F = [N+NA-KC]N' + T[I-NN']. (62)
Again if NNT is nonsingular
F o= [NeNA-kCINT Tyl (63)

The gain can then be found by solving the equation

o o 1r G =il Lol =1
b o= P Al + [NrNA—PCEC R C]N [NN] P+ NQ (64)

from the proper initial condition and substituting thec result in (52).

IV. SOLUTION FOR SPECIFIC F

In Case 1, it was found that the singular arc did not specify F.
In Cases 2 and 3, it is very possible that no F can be found to maintain
the singular arc. Therefore it is appropriate to investigate the solu-
tion to the TPBVP when ¥ is specified a priori. It is observed that

Acc(t) can be precorpiuted in this case, and may be regarded as a known

quantity.
o T
Aol = 'L(t,tf)sz(t,tfw.( Ve, OV (8, 0dt (65)
where
b= - Fly
p(t,t) = 1.
12
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Substituting the expression for the gain (32), in (22) and (29) results

in a linear TPBVP since P;;(r) and Aoe(t) are known. Equation (22)

becomes
2 A o s i e ol 1 =
P;é Apxe + Pxx[ﬁ+NA FN] + pxeF + QN P——C R C[ = lxxAx£ ev]'

(66)
Equation (29) is rewritten as

Ro = - ATAo - nF - [N+NA-1‘N]TAee cTR7ler + cTRlop—nn 1.
(67)
Equations (66) and (67) are linear in the unknowns pié and A}é’ so there
is no difficulty other than possibly the high dimensionality of the
problem to contend with. If Aee is a scalar matrix, however, things work

cut particularly well. Suppose F, U, and S are scalar matrices, i.c.,

=]
U = ul (68)
S = sl.

Then obviously A, is a scalar matrix also. We can thus reposition Moo
and F in (66) and (67) obtaining

= [A+I~ P—-(‘TR lc] - eglnt Crh + p_[ﬁ.,,NA_FN L
4 S B (69)
and
| IgERes [A e 1T Lo ]A_ g [MA-m]H o
Xe Xe A s

Note that upon repositioning, the dimension of I in (68) will change in
general. It is convenient to make the following definitions

T p~_CTR i

Gyp & A*F
RIS I S [T
G2 PR P

T

A
Gz) 2 C R C (71)
TR D O el
Gy (A"+F-n_tc'R Tep—]
D, & p[feNA-EN]T + oNT
. XX
p. & - NeNa-EnTa
& ' ee




Then we have

I.)ie = G | Gre p_i_e_ + E‘_ (72)
A;é G21 | G2z A}é D,
or
p— P
e g B S BT (73)
M e A e

The boundary condition for Pi'e is at t, and for A;e is at tg. If ¢ is
the transition matrix associated with G, i.e.,

. o1y | 212 Gy ‘ G2 | |91 l 42
3 = |- = (74)
d1 | 922 G221 I Gz | | 922 l d,,

and ¢(t,t) = I then

P;(_e(t) = ¢11(t,to)p;e(to) + QlZ(t’tO)A'{e(to)
t
+ '/t'o [Qll(t)T)Dl(T) + ¢l2(t’T)D2(T)}dT. (7§)
Also
0 SUEGlpEn R et + 0 (te,to) Mg, (To)

t
. jt'o o2 (0D () + Oz (e (0] dr. (0)

One can solve (76) for A;e(to), substitute the result in (75) and solve

(75) for P;e(t) in terms of P;e(to). Similarly, one can solve for l\'-\;c(t)

using
A;é(t) = ¢21(t,to)P§é(to) + ¢22(t,to)A;é(to)
t
v [ fear e, 00 + 62, (£,1)D, (1) dr. (77)
to

The results can then be substituted in (32) to get the optimal gain.
Under certain conditions the above procedure is a good approach. Some-
times it is convenient to use an approach which leads to a Riccati
equation.

4.1 A Riccati Solution

Here we assume that Axe can be written as




e s e

22 P™
¥

- * ..:_

o

-

A;e = MP;e iR (78)

Then

=
|
i

[M + MGiy + MGoMJPL, + MD; + B + MG, ;8
and '

7\§e = [G21 *+ GooM]P, + Go2B + D,. (79)
If (78) and (79) are to hold for arbitrary Pie’ then

M+ MGy + MGioM = Gy + GyoM (80)

and
é + MD; + MG;,B = GpaB + D,. (81)
Since A}é(tf) = 0, the above equations are solved backwards in time from

conditions

M(tf) = 0 (82)

and
B(ty) = 0. (83)

Solving the Riccati equation (80) and the equation for 8 must be done
off line, as in a linear regulator problem, since the result is to be
obtained by backward integration. The forward equation for pié is

Pre = Gu+ GiMPo + G128 + D (84)
which is solved from the appropriate initial condition either on line
or off line depending on computer requirements. The gain to be used in
the filter is then .

K = [P;'I; + Ae;(MP;;s)TPE]CTR & (85)
The results presented in this section are suboptimal in general, and
optimal in the situation referred to as Case 1.

V. EXAMPLES

The first example considers estimating the output of a generalized
Wiener process, i.e., the noise is Gaussian, A equals 0, N=C, and the
problem is in the category indicated as Case 3. It is assumed that a
solution to (60) cxists and that cct is nonsingular. The optimal
estimate of z(t) =C(t)x(t) is obtained using the filter
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20 = todm{cdm] Em « ko m-im]
with initial condition

Z(ty) = Cfty)i,
and gain
K(t) = Pe;(t)cT(t)R’l(t)
where

e T[ T]-l 2 g o
Pex CC" |CC pex + CQ Pe)—(C R Pex
with initial condition

Px(te) = C(to)Po.
Alternatively, since CP—)Ee= Pee’ K may be evaluated as

K(t) = P (t) R7I(t)
where
b = ledf(ecT)lule, » e [E(edh) Lk|T e oocT + s
The above is appealing since Pee has fewer elements to calculate than
pxe'
The next example is of the category referred to as Case 1 where a
full order filter is used. It is a scalar case. The problem is to get
a best estimate of x at t=T where
x =0
y(t) = x(t) + v(v).
Initially at t=0 x has mean zero and variance 1, and v(t) is zero mean
white noise with unity covariance parameter. If F is selected as zcro
the filter is particularly simple with a constant gain

30 = X)) = gy,

The initial condition is X(0) =0. The mean square error is

* i R
P(t) 1 () .

Evaluated at t=T, the above gives

P) = 37

which is exactly what one would get using a Kalman filter. The filter
is simpler than a Kalman filter, but the mean square error is larger




than the Kalman filter except at t=T where the mean square error equals
that of the Kalman filter. This is illustrated in Figure 1 with T=1.
Note that the filter we have developed in this example is of the same
structure as the MAP receiver for estimating a constant as presented in
Van Trees [13].

The third example illustrates both Cases 1 and 2. In this example
the system is given by a second order dynamic model representing a
vehicle with random thrust, i.e.,

.

X, 0 0 X5 1

n
+

W

where x, represents the position of the vehicle and x, the velocity and
w is a zero mean white noise thrust with covariance q. The vehicle
position is observed via

YT M
where v is zero mean white measurement noise with covariance r. A
reduced order filter is to be designed in order to estimate the position
of the vehicle. The realizations for the Kalman filter and the filter
developed here are shown in Figures 2 and 3. We have selected F=0. The
estimation performance index used is equation (17). The values for q and
r are 10. and 1. respectively. The final time was chosen as one sccond.
The first case 1s that of final time estimation (U=0 and S=1) and the
second case corresponds to U=100. and S=1. Figure 4 shows the mcan
square value of the first case. The Kalman results are not shown as the
two results are nearly coincident. A measure of deviation from the

Kalman results of

b _/tf(p S L.
t ee KF

; * 16
where pKF is the Kalman filter mean square error yields J = 0.00645

Figure 5 shows the mean square value of the second case. Again, the
results are too close tc plot separately. The measure of deviation

17
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VI. REMARKS AND CONCLUSIONS

We have presented new results in optimal and suboptimal filtering.
These results are very attractive for implementation purposes particularly
for problems where the Kalman filter is of too great a dimension to be

practical. The results herein are in closed form and, thus, it is not
necessary to solve a difficult two point boundary value problem. Some
relatively simple realizations may be obtained via off line computation.

One of the limitations of the results is that there may be problems
whereby a solution for F as in (50) or (60) may not exist. Also, one
cannot conclude that the filter is conditionally unbiased when F is
specified arbitrarily.

However, the results can be used in a number of problems to
decrease the on-line computational burden with the filter structures
i described in this paper, and this is exceedingly important in many
applications. This paper yields a method for synthesis of reduced
order filters as well as a class of full order filters of simpler
structure.
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